
Temporal Data Classification
using Linear Classifiers

Peter Revesz and Thomas Triplet

University of Nebraska - Lincoln, Lincoln NE 68588, USA
revesz@cse.unl.edu, ttriplet@cse.unl.edu

Abstract. Data classification is usually based on measurements recorded
at the same time. This paper considers temporal data classification where
the input is a temporal database that describes measurements over a pe-
riod of time in history while the predicted class is expected to occur
in the future. We describe a new temporal classification method that
improves the accuracy of standard classification methods. The benefits
of the method is tested on weather forecasting using the meteorological
database from the Texas Commission on Environmental Quality.

1 Introduction

Data classifiers, such as support vector machines or SVMs [24], decision trees [15],
or other machine learning algorithms, are widely used. However, they are used
to classify data that occur in the same time period. For example, a set of cars
can be classified according to their fuel efficiency. That is acceptable because the
fuel efficiency of cars is not expected to change much over time. Similarly, we
can classify a set of people according to their current heart condition. However,
people’s heart condition can change over time. Therefore, the more interesting
thing would be to classify people using the current information according to
whether they are likely to develop serious heart condition sometime in the future.
Classifications where the current data is used for predicting the future is also
used with classifiers.

Now consider a patient who transfers from one doctor to another. The new
doctor may give the patient a set of tests and use the new results to predict
the patient’s prospects. The question arises whether this prediction could be
enhanced if the new doctor would get the older test results of the patient. Intu-
itively, there are cases where the old test results could be useful for the doctor.
For example, the blood pressure of a patient may be 130/80, which may be
considered within normal. However, if it was 120/80 last year and 110/80 the
year before, then the doctor may be still concerned about the steady rise of the
patient’s blood pressure. On the other hand, if the patient’s blood pressure in
the past was always around 130/80, then the doctor may be more confident of
predicting the patient to be in good health. Therefore, the history of the patient
is important in distinguishing between these two cases.

Nevertheless, the temporal history of data is usually overlooked in the ma-
chine learning area. There are only a few previous works that combine some kind



II

Fig. 1. Comparison of the standard and the temporal classification methods.

of spatio-temporal data and classification algorithms. Qin and Obradovic [14]
are interested in incrementally maintaining an SVM classifier when new data is
added to a database. Therefore, [14] is not useful to predict the future health
of a patient or other classes that one may want to predict for the future. Tseng
and Lee [22] classify temporal data using probabilistic induction. Our earlier
work [19] considered data integration and reclassification by classifiers when all
the data was measured at the same time.

In this paper, we propose a new temporal classfication method that instead of
probabilistic induction (as in [22]) extends existing linear classifiers to deal with
temporal data. Figure 1 compares the standard classifiers and the new temporal
classifier method. The standard classifiers take as input the current (at time t)
values of the features in the feature space and the class label some n time units
ahead (at time t + n). The temporal classifiers take as input in addition to the
current features and the class, the history, that is, the old values of the features
up to some i time units back in time (that is, from time t− i to t− 1).

Weather forecasting is a challenging task. It is also natural to study because
the major interest is in the prediction of the weather ahead of time instead of
describing the current conditions. We tested our temporal classifier on a meteo-
rological database of the Texas Comission on Environmental Quality. At a first
glance it would seem useless to look at the weather history back more than a
couple of days. Surprisingly, we discovered that the history does matter more



III

than expected and the classification can be improved if one looks back 15 days
in time.

We were also surprised that the history of some features were considerably
more useful than the history of the others. Moreover, the features that are the
most important when looking at only time t are not the same as the features that
are important when one looks at the weather history. That happens because the
different the features have different permanency. For example, wind direction
may change greatly form one hour to another. On the other hand, ozone levels
are fairly constant.

The rest of the paper is organized as follows. Section 2 presents a review of
classifiers and constraint databases. Section 3 describes our database represen-
tation and querying of linear classifiers. These representations are used in our
implementations. Section 4 presents the new temporal classification method and
a corresponding data mapping. Section 5 describes computer experiments and
discusses the results. Finally, Section 6 gives some concluding remarks and open
problems.

2 Review of Classifiers and Constraint Databases

In many problems, we need to classify items, that is, we need to predict some
characteristic of an item based on several parameters of the item. Each parameter
is represented by a variable which can take a numerical value. Each variable is
called a feature and the set of variables is called a feature space. The number of
features is the dimension of the feature space. The actual characteristic of the
item we want to predict is called the label or class of the item.

To make the predictions, we use classifiers. Each classifier maps a feature
space X to a set of labels Y . The classifiers are found by various methods using
a set of training examples, which are items where both the set of features and
the set of labels are known. A linear classifier maps a feature space X to a set of
labels Y by a linear function. In general, a linear classifier f(−→x ) can be expressed
as follows:

f(−→x ) = 〈−→w · −→x 〉+ b =
∑

i

wixi + b (1)

where wi ∈ R are the weights of the classifiers and b ∈ R is a constant. The
value of f(−→x ) for any item −→x directly determines the predicted label, usually
by a simple rule. For example, in binary classifications if f(−→x ) ≥ 0, then the
label is +1 else the label is −1 .

Example 1. Suppose that a disease is conditioned by two antibodies A and B.
The feature space is X = {Antibody A, Antibody B} and the set of labels is
Y = {Disease,No Disease}, where Disease corresponds to +1 and No Disease
corresponds to −1. Then, a linear classifier is:

f({Antibody A, Antibody B}) = w1Antibody A + w2Antibody B + b



IV

Fig. 2. A set of training examples with labels +1 (♦) and −1 (•). This set is linearly
separable because a linear decision function in the form of a hyperplane can be found
that classifies all examples without error. Two possible hyperplanes that both classify
the training set without error are shown (solid and dashed lines). The solid line is
expected to be a better classifier than the dashed line because it has a wider margin,
which is the distance between the closest points and the hyperplane.

where w1, w2 ∈ R are constant weights and b ∈ R is a constant. We can use the
value of f({Antibody A, Antibody B}) as follows:

– If f({Antibody A, Antibody B}) ≥ 0 then the patient has Disease.
– If f({Antibody A, Antibody B}) < 0 then the patient has No Disease.

2.1 Support Vector Machines

Suppose that numerical values can be assigned to each of the n features in the
feature space. Let −→xi ∈ Rn with i ∈ [1..l] be a set of l training examples. Each
training example −→xi can be represented as a point in the n-dimensional feature
space.

Support Vector Machines (SVMs) [24] are increasingly popular classification
tools. SVMs classify the items by constructing a hyperplane of dimension n− 1
that will split all items into two sets of classes +1 and −1. As shown in Figure 2,
several separating hyperplanes may be suitable to split correctly a set of training
examples. In this case, an SVM will construct the maximum-margin hyperplane,
that is, the hyperplane which maximizes the distance to the closest training
examples.

2.2 ID3 Decision Trees

Decision trees were frequently used in the nineties by artificial intelligence ex-
perts because they can be easily implemented and they provide an explanation
of the result. A decision tree is a tree with the following properties:

– Each internal node tests an attribute.



V

Fig. 3. A moving square.

– Each branch corresponds to the value of the attribute.
– Each leaf assigns a classification.

ID3 [15] is a greedy algorithm that builds decision trees. The ID3 decision
tree and SVMs are both linear classifiers because their effects can be represented
mathematically in the form of Equation (1).

2.3 Constraint Databases

Constraint databases [13, 17] form an extension of relational databases [7] where
the database can contain variables that are usually constrained by linear or
polynomial equations.

Example 2. Figure 3 shows a moving square, which at time t = 0 starts at the
first square of the first quadrant of the plane and moves to the northeast with a
speed of one unit per second to the north and one unit per second to the east.

Moving Square

X Y T
x y t x ≥ t, x ≤ t + 1, y ≥ t, y ≤ t + 1, t ≥ 0

When t = 0, then the constraints are x ≥ 0, x ≤ 1, y ≥ 0, y ≤ 1, which is
the unit square in the first quadrant. We can calculate similarly the position of
the square at any time t > 0 seconds. For example, when t = 5 seconds, then
the constraints become x ≥ 5, x ≤ 6, y ≥ 5, y ≤ 6, which is another square with
lower left corner (5, 5) and upper right corner (6, 6).



VI

Constraint databases can be queried by both Datalog and SQL queries [1,
16, 23]. Constraint database systems include CCUBE [4], DEDALE [9], IRIS [3],
and MLPQ [18].

Constraint databases, which were initiated by Kanellakis et al. [12], have
many applications ranging from spatial databases [21, 6] through moving ob-
jects [10, 2] to epidemiology [20]. However, only Geist [8] and Johnson et al. [11]
applied them to classsification problems. In particular, both Geist [8] and John-
son et al. [11] discussed the representation of decision trees by constraint databases.

3 Representation and Querying of Linear Classifiers

This section describes the representation of linear classifiers in constraint databases
[13, 17], which were reviewed in Section 2.3. In each case, the constraint database
representation can be queried using any linear constraint database system. We
also describe a few typical queries that are useful for classifying new data.

3.1 Representation and Querying of SVMs

The Texas Commission on Environmental Quality (TCEQ) database (see Sec-
tion 5.1 for details) contains weather data for over 7 years. For simplicity, con-
sider the following smaller version with only six consecutive days, where for each
day D, the features are: Precipitation P, Solar Radiation R, and Wind Speed
(north-south component) W, and the label is Temperature T, which is ”High”
or ”Low.”

Texas Weather

D P R W T
1 1.73 2.47 -1.3 Low
2 0.95 3.13 9.32 High
3 3.57 3.56 4.29 Low
4 0.24 1.84 1.51 Low
5 0.0 1.19 3.77 High
6 0.31 4.72 -0.06 High

To classify the above data, we can use a SVM linear classifier. First, we need
to assign a numerical value to symbolic features because SVMs are unable to
handle non-numerical values. For instance, we assign the value t = −1 whenever
t =′ low′ and t = +1 whenever t =′ high′. Then, we use the svmlib[5] library to
build a linear classification using a SVM. That would result in a linear classifier,
which can be represented by the following linear constraint relation:

Texas SVM

P R W T
p r w t −0.442838p + 0.476746r + 2.608779w − 0.355809 = t



VII

Given the Texas Weather(d, p, r, w) and the Texas SV M(p, r, w, t) relations,
the following Datalog query finds for each day the distance t to the hyperplane
separating the two temperature classes.

Temp_SVM(d, t) :- Texas_Weather(d, p, r, w), Texas_SVM(p, r, w, t).

Finally, we can use the SV M relation to do the predictions, based on whether
we are above or below the hyperplane.

Predict(d, y) :- Temp_SVM(d, t), ’high’ = y, t >= 0.
Predict(d, y) :- Temp_SVM(d, t), ’low’ = y, t < 0.

Instead of the above Datalog queries, one can use the logically equivalent SQL
query:

CREATE VIEW Predict AS
SELECT D.d, "High"
FROM Texas_Weather as D, Texas_SVM as T
WHERE D.p = T.p AND D.r = T.r AND D.w = T.w AND T.t >= 0

UNION
SELECT D.d, "Low"
FROM Texas_Weather as D, Texas_SVM as T
WHERE D.p = T.p AND D.r = T.r AND D.w = T.w AND T.t < 0

3.2 Representation and Querying of ID3 Decision Trees

Figure 4 shows the ID3 decision tree for the Texas Weather Data in Section 3.1.
Note that in this ID3 decision tree only the Precipitation feature is used. That is
because the value of Precipitation is enough to classify the data for each day in
the small database. For a larger database some precipitation values are repeated
and other features need to be looked at to make a classification.

Fig. 4. Decision Tree for the prediction of the temperature using the weather dataset.

A straightforward translation from the ID3 decision tree in Figure 4 to a
linear constraint database yields the following.



VIII

Texas ID3

P R W T
p r w t p = 1.73, t =′ Low′

p r w t p = 0.95, t =′ High′

p r w t p = 3.57, t =′ Low′

p r w t p = 0.24, t =′ High′

p r w t p = 0.0, t =′ Low′

p r w t p = 0.31, t =′ High′

Given the Texas Weather(d, p, r, w) and the Texas ID3(p, r, w, t) relations, the
following Datalog query can be used to predict the temperature for each day:

Predict(d, t) :- Texas_Weather(d, p, r, w), Texas_ID3(p, r, w, t).

Instead of Datalog queries, one can use the logically equivalent SQL query:

CREATE VIEW Predict AS
SELECT D.d, T.t
FROM Texas_Weather as D, Texas_ID3 as T
WHERE D.p = T.p AND D.r = T.r AND D.w = T.w

3.3 Representation and Querying of ID3-Interval Decision Trees

A straightforward translation from the original decision tree to a linear constraint
database does not yield a good result for problems where the attributes can have
real number values instead of only discrete values. Real number values are often
used when we measure some attribute like the wind speed in miles-per-hour or
the temperature in degrees Celsius.

Hence we improve the naive translation by introducing comparison con-
straints >, <,≥,≤ to allow continuous values for some attributes. That is, we
translate each node of the decision tree by analyzing all of its children. First, the
children of each node are sorted based on the possible values of the attribute.
Then, we define an interval around each discrete value based on the values of
the previous and the following children. The lower bound of the interval is de-
fined as the median value between the value of the current child and the value
of the previous child. Similarly, the upper bound of the interval is defined as the
median value of the current and the following children. For instance, assume we
have the values {10, 14, 20} for an attribute for the children. This will lead to
the intervals {(−∞, 12], (12, 17], (17, +∞)}.

Figure 5, which shows a modified decision tree, based on the above heuristic.
Translating that modified decision tree yields the following constraint relation:



IX

Fig. 5. Decision Tree for the prediction of the temperature using the weather dataset.

Texas ID3-Interval

P R W T
p r w t r < 2, w < 2.64, t =′ Low′

p r w t r < 2, w ≥ 2.64, t =′ High′

p r w t r ≥ 2, r < 4.3, p < 2.51, w < 8.63, t =′ Low′

p r w t r ≥ 2, r < 4.3, p < 2.51, w ≥ 8.63, t =′ High′

p r w t r ≥ 2, r < 4.3, p ≥ 2.51, t =′ Low′

p r w t r ≥ 4.3, t =′ High′

The querying of ID3-Interval decision tree representations can be done like
the querying of ID3 decision tree representations after replacing Texas ID3 with
Texas ID3− Interval.

4 A Temporal Classification Method

The Texas Weather database in Section 3.1 is an atypical data for linear classi-
fiers because it involves a temporal dimension. Although one may consider each
day as an independant instance and simply ignore the temporal dimension, as we
did earlier, it probably would not be the best solution. Instead, we propose below
a temporal classification method for dealing with temporal data. The temporal
classification method is based on an alternative representation of the database.



X

As an example, the Texas Weather(d, p, r, w, t) relation can be rewritten
into the temporal relation

Texas Weather History(d, pd−2, rd−2, wd−2, pd−1, rd−1, wd−1, pd, rd, wd, t)

where for any feature f ∈ {p, r, w} the fi indicates the day i when the mea-
surements are taken. Note that even though we did not use in Texas Weather
any subscript, the implicit subscript for the features was always d. Now the sub-
scripts go back in time, in this particular representation two days back to d− 1
and d− 2. The Texas Weather History relation is the following.

Texas Weather History

D Pd−2 Rd−2 Wd−2 Pd−1 Rd−1 Wd−1 Pd Rd Wd T

3 1.73 2.47 -1.3 0.95 3.13 9.32 3.57 3.56 4.29 Low
4 0.95 3.13 9.32 3.57 3.56 4.29 0.24 1.84 1.51 Low
5 3.57 3.56 4.29 0.24 1.84 1.51 0.0 1.19 3.77 High
6 0.24 1.84 1.51 0.0 1.19 3.77 0.31 4.72 -0.06 High

The Texas Weather History relation uses the same set of feature measures
as the Texas Weather relation because the data in the Pd−2, Rd−2, Wd−2 and
the Pd−1, Rd−1, Wd−1 columns are just shifted values of the Pd, Rd, Wd columns.
However, when the Texas Weather History relation is used instead of the
Texas Weather relation to generate one of the linear classifiers, then repre-
sented and queried as in Section 3, then there is a potential for improvement
because each training data includes a more complete set of features.

For example, if today’s precipitation is a relevant feature in predicting the
temperature a week ahead, then it is likely that yesterday’s and the day before
yesterday’s precipitations are also relevant features in predicting the tempera-
ture a week ahead. That seems to be the case because the precipitation from any
particular day tends to stay in the ground and affect the temperature for many
more days. Moreover, since the average precipitation of three consequtive days
varies less than the precipitation on a single day, the former may be more reli-
able than the latter for the prediction of the temperature a week ahead. These
intuitions lead us to believe that the alternative representation is advantageous
for classifying temporal data. Although this seems a simple idea, it was not tried
yet for decision trees or SVMs.

In general, the alternative representation allows one to go back i number of
days and look ahead n days, as outlined in Figure 1. The original representation
is a representation that looks back 0 days and looks ahead the same number n of
days. Therefore, the transformation from a basic to an alternative representation,
which we denote by =⇒, can be described as:

Texas Weather0,n =⇒ Texas Weather Historyi,n

where for any relation the first superscript is the days of historical data and
the second superscript is the days predicted in the future.



XI

5 Experimental Results and Discussion

5.1 Experiments with TCEQ Data

We experimentally compared the regular classification and the temporal classifi-
cation methods. In some experiments both the regular and the temporal classi-
fication methods used SVMs and in some other experiments both methods used
decision trees. In particular, we used the SVM implementation from the SVM-
Lib [5] library and our implementation of the ID3-Interval algorithm described
in Section 3.2.

The experiments used the Texas Commission on Environmental Quality
(TCEQ) database (available from http://archive.ics.uci.edu/ml), which
recorded meteorological data between 1998 and 2004. From the TCEQ database,
we used only the data for Houston, Texas and the following fourty features and
the class to predict.

1-24. sr: hourly solar radiation measurements
25. asr: average solar radiation
26. ozone: ozone pollution (0 = no, 1 = yes)
27. tb: base temperature where net ozone production begins

28-30. dew: dew point (at 850, 700 and 500 hPa)
31-33. ht: geopotential height (at 850, 700 and 500 hPa)
34-36. wind-SN: south-north wind speed component (at 850, 700 and 500 hPa)
37-39. wind-EW: east-west wind speed component (at 850, 700 and 500 hPa)

40. precp: precipitation
41. T: temperature class to predict

For sr, dew, ht, wind-SN, wind-EW we use a subscript to indicate the
hour or the hPa level. We also use the following procedure to predict the tem-
perature T , where n is a training set size control parameter:

1. Normalize the dataset.
2. Randomly select 60 records from the dataset as a testing set.
3. Randomly select n percent of the remaining records as a training set.
4. Build a SVM, ID3, or ID3-Interval classification using the training data.
5. Test the accuracy of the classification on the testing set.

In step (1), the data was normalized by making for each feature the lowest
value to be −1 and the highest value to be +1 and proportionally mapped into
the interval [−1, +1] all the other values. This normalization was a precaution
against any bias by the classifications. The normalization also allowed a clearer
comparison of the SVM weights of the features.

For testing the regular classifiers, we used the above procedure with TCEQ0,2,
which we obtained from the original TCEQ0,0 database by shifting backwards
by two days the T column values. For testing the temporal classifiers, we made
the transformation

TCEQ0,2 =⇒ TCEQ15,2

as described in Section 4.



XII

Fig. 6. Comparison of regular and temporal classification using 40 features and ID3.

Fig. 7. Comparison of regular and temporal classification using 40 features and SVMs.



XIII

Figure 6 reports the average results of repeating the above procedure twelve
times for n equal to 5, 15, 25, . . . , 95 using the original ID3 algorithm. Similarly,
Figure 7 reports the average results using SVMs.

The experiments show that adding the historical data significantly improves
the temperature predictions using both the ID3 and the SVM algorithms. More-
over, the SVM algorithm performed better than the original ID3 algorithm,
although the ID3-Interval algorithm (not shown) gave some improvements.

5.2 Experiments with Reduced TCEQ Data

Databases with a large number of features often include many noisy variables
that do not contribute to the classification. The TCEQ database also appears to
include many noisy variables because the SVM placed small weights on them.
Since we normalized the data, the relative magnitudes of the SVM weights cor-
respond to the relative importance of the features. In particular, the following
numerical features had the highest weights:

25. asr: average solar radiation
35. wind-SN700: south-north wind speed component at 700 hPa
40. precp: precipitation

How accurate classification can be obtained using only these three selected
features? These features have some interesting characteristics that make them
better than other features. For example, wind-SN700, the south-north wind speed
component, is intuitively more important than wind-EW700, the east-west wind
speed component, in determining the temperature in Houston, Texas. In ad-
dition, the precipitation can stay in the ground for some time and affect the
temperature a longer period than most of the other features. Hence our hypoth-
esis was that these three features can already give an accurate classification.

To test this hypothesis, we conducted another set of experiments by applying
the experimental procedure described in Section 5.1 to the reduced three-feature
TCEQ database. The results of these experiments are shown in Figures 8 and 9.
The accuracies of the classifiers based on only three features were surprisingly
similar to the accuracies of the classifiers based on all fourty features. In this
experiment the temporal classification was again more accurate than the tradi-
tional classification.

6 Conclusions

Our experiments on the TCEQ database show two major results: (1) Significant
accuracy improvements are obtained by using histories, and (2) No accuracy
improvement is obtained by using more than three features.

An interesting question is whether these results also hold for other databases.
There are some other remaining questions. For example, would non-linear tempo-
ral classifiers also be better than regular non-linear classifiers? In the future, we
plan to experiment with other data sets and use non-linear classifiers in addition
to SVMs and decision trees.



XIV

Fig. 8. Comparison of regular and temporal classification using 3 features and ID3.

Fig. 9. Comparison of regular and temporal classification using 3 features and SVMs.



XV

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

2. S. Anderson and P. Revesz. Efficient maxcount and threshold operators of moving
objects. Geoinformatica, 13, 2009.

3. B. Bishop, F. Fischer, U. Keller, N. Steinmetz, C. Fuchs, and M. Pressnig. Inte-
grated Rule Inference System, 2008. Software available at: www.iris-reasoner.org.

4. A. Brodsky, V. Segal, J. Chen, and P. Exarkhopoulo. The CCUBE constraint
object-oriented database system. Constraints, 2(3–4):245–77, 1997.

5. C. C. Chang and C. J. Lin. LIBSVM: A library for support vector machines, 2001.
Software available at: www.csie.ntu.edu.tw/˜ cjlin/libsvm.

6. J. Chomicki, S. Haesevoets, B. Kuijpers, and P. Revesz. Classes of spatiotem-
poral objects and their closure properties. Annals of Mathematics and Artificial
Intelligence, 39(4):431–461, 2003.

7. E. F. Codd. A relational model for large shared data banks. Communications of
the ACM, 13(6):377–87, 1970.

8. I. Geist. A framework for data mining and KDD. In Proc. ACM Symposium on
Applied Computing, pages 508–13. ACM Press, 2002.

9. S. Grumbach, P. Rigaux, and L. Segoufin. The DEDALE system for complex
spatial queries. In Proc. ACM SIGMOD International Conference on Management
of Data, pages 213–24, 1998.

10. R. Güting and M. Schneider. Moving Objects Databases. Morgan Kaufmann, 2005.
11. T. Johnson, L. V. Lakshmanan, and R. T. Ng. The 3W model and algebra for

unified data mining. pages 21–32, 2000.
12. P. C. Kanellakis, G. M. Kuper, and P. Revesz. Constraint query languages. Journal

of Computer and System Sciences, 51(1):26–52, 1995.
13. G. M. Kuper, L. Libkin, and J. Paredaens, editors. Constraint Databases. Springer-

Verlag, 2000.
14. Y. Qin and Z. Obradovic. Efficient learning from massive spatial-temporal data

through selective support vector propagation. In 17th European Conference on
Artificial Intelligence, pages 526–530, 2006.

15. J. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106, 1986.
16. R. Ramakrishnan. Database Management Systems. McGraw-Hill, 1998.
17. P. Revesz. Introduction to Constraint Databases. Springer-Verlag, 2002.
18. P. Revesz, R. Chen, P. Kanjamala, Y. Li, Y. Liu, and Y. Wang. The MLPQ/GIS

constraint database system. In Proc. ACM SIGMOD International Conference on
Management of Data, 2000.

19. P. Revesz and T. Triplet. Reclassification of linearly classified data using con-
straint databases. In 12th East European Conference on Advances of Databases
and Information Systems, pages 231–245, 2008.

20. P. Revesz and S. Wu. Spatiotemporal reasoning about epidemiological data. Ar-
tificial Intelligence in Medicine, 38(2):157–70, 2006.

21. P. Rigaux, M. Scholl, and A. Voisard. Introduction to Spatial Databases: Applica-
tions to GIS. Morgan Kaufmann, 2000.

22. V. S. Tseng and C.-H. Lee. Effective temporal data classification by integrat-
ing sequential pattern mining and probabilistic induction. Expert Systems with
Applications, 36(5):9524–9532, 2009.

23. J. D. Ullman. Principles of Database and Knowledge-Base Systems. Computer
Science Press, 1989.

24. V. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, 1995.


